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ABSTRACT

In a classification rule for deciding between two pos-
sible classes, generally a single threshold test is used. 1If,

however, one or both of the class probability density functions

for the decision variable is multimodal or if the class variances
are unequal, the situation may arise where it becomes desirable

to use multiple thresholds to bracket several regions of the
decision variable assigned to the two classes. An easy count of

the number of inflection points in the operating characteristic
curve generated from the single threshold case permits determination

of the maximum number of thresholds that should be used.
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I. INTRODUCTION

In the discrimination problem where one wants to decide

whether the scalar quantity x comes from class 1 or class 2, the

optimal decision rule, using either the Bayes or Neyman-Pearson

criterion, is a threshold test on the likelihood ratio: if g
A(x) < T decide class 1, otherwise decide class 2, where ?
A(x) é pz(x)/pl(x) and pi(x) is the probability density function
of x given class i, i = 1,2. In many problems A is a monotonic
function of x so that the decision rule A > T is equivalent to
the threshold test x 2 X, where X, is the divide point on the x | ’

axis that separates the axis into class 1 and class 2 regions,

i.€., A(xo) = T. If, however, A(x) is not a monotonic function

of x, as can happen in the case of multimodal distribution densities

or when one density function is sufficiently wide that it extends

PP SRIPPS—

beyond both sides of the other class density function, then the
decision rule A(x) > T can give rise to several divide points on
the x axis separating alternate class 1 and class 2 regions. The
number of x axis divide points is the number of roots of the
equation A(x) = T. One can either find which region the observed
value of x falls in or one can check A(x) : T the two approaches
are identical.

The problem is that often one does not know pl(x) or

pz(x) and therefore also A(x). In the absence of such knowledge,

the usual method of proceeding is to use the simplest decision
rule, if x < X, decide class 1, otherwise decide class 2, where ,

X, is a single divide point on the axis. Of course this is




equivalent to assuming the likelihood ratio is monotonic, which may
or may not actually be the case. The next useful step is to plot
the two kinds of decision error rates a vs B (normalized between
0 and 1) in the form of an operating characteristic (0C) curve,
where the free running parameter is the divide point X,. Here

a is the leakage rate (deciding class 1 when class 2 is correct)
and B is the false alarm rate (deciding class 2 when class 1

is correct). If the optimal decision rule would have been to

use several divide points (A(x) non-monotonic), then the OC curve
obtained by using just one divide point will have various twists
and bends that would not otherwise be there.

We wish to use the information contained in the twists
and bends to work backwards (still in the absence of any knowledge
of A(x) or the class density distributions) to know how many
thresholds on x, i.e., how many divide points, should be used in
redesigning the decision rule on x if more than one threshold is
appropriate. In the analysis that follows, we will get instead
a weaker piece of information, namely the upper bound on the
number of thresholds, based on the observed number of inflection
points in the OC curve. The actual number of thresholds that
should be used depends on such things as the a priori probabilities
of occurrence for the two classes and the cost functions, all of
which are ignored here or assumed unknown.

If one is suspicious from looking at the OC curve that
A(x) is non-monotonic, then one can investigate the matter more

thoroughly by estimating pl(x) and pz(x) by constructing histograms




or Parzen density estimates from the given data. Indeed, one could 1
proceed from the very beginning in every case by estimating the

class density functions and thereby gain knowledge of how many ‘ J
thresholds on x to use, but often that effort is wasted if it

turns out that in fact one threshold on x was optimal. Also,
estimating continuous distribution densities is not a controversy-
free procedure; the choice of bin size and smoothing kernel can
critically affect the results, and the question of convergence to
the true underlying density function is not always assured. The
suggestion advocated in this note is to go ahead and use one
threshold on x, get the OC curve, and if examination of the curve
shows that more than one threshold might be optimal, then construct
estimates of pl(x), pz(x), and A(Xx).

The next section contains a short catalog of example
density functions and the corresponding schematic OC curves. Section
II1I contains conclusions that have been illustrated in the catalog
and proofs of those conclusions. Section IV concludes with some
worked examples based on Gaussian densities.

II. A SHORT CATALOG OF SINGLE THRESHOLD OC CURVES FOR VARIOUS
TYPES OF CLASS DISTRIBUTIONS

The following single threshold OC curves are sketched
on linear scales for the error rates o and 8. The catalog does s
not begin to exhaust all the possibilities for the class dis- ‘
tributions (probability density functions) but it should be ?

sufficiently complete to allow the basic ideas to become apparent
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and to permit stating some general theorems. The OC curves are
sketched based on using a single (variable) threshold X, and the
arbitrary convention chosen has been to call class 1 the class
with the smaller mean value and decide class 1 if x < L and
class 2 otherwise. Scales are suppressed on all but the first
OC curve. The inflection points are marked with oO's, and will

be featured in a theorem later. Example (desired) decision thres-

holds on x are marked on the distribution sketches. Modes that

. |
occur in the wings of the distributions either do or do not affect
the decision rule depending on whether they call for the addition
of another threshold. Those which do not are not important and *

are ignored after the first catalog entry. t :
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III. CONCLUSIONS AND PROOFS

From the OC curve illustrations, all sketched by using
a single (variable) threshold on x and linear error rate scales,
the following conclusions can be made:

1. The single threshold is optimal if there is no
inflection point on the OC curve.

2. More generally, the upper bound on the number
of thresholds that should be used is one more than the
number of inflection points on the OC curve.

3. If there is one inflection point or more on the
OC curve, then the likelihood ratio, A(x) 2 pz(x)/pl(x),
is either (i) not a monotonic function of x, or (ii)
there is a horizontal inflection peint in A(x), i.e.,
A'(xl) = A"(xl) = 0 for some X, . (The occurrence of (ii)
is expected to be very rare.)

4, The two class distributions can be considered
identical if the OC curve passes sufficiently near to the
equal error point (.5, .5), and the curve is sufficiently
close to a 45° angle straight line. {

Proofs

Since 1. shove is a special case of 2., it is sufficient
to prove that 2. is true. One can begin by obtaining the
condition for an inflection point in the OC curve. The detection
rate is Pp(x ) = 1 - a(x)) = 1 - A[xo p;(x) dx and the false alarm

rate is B(x,) -J;: p;(x) dx. The slope ot the OC curve is j
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dPD A da/dxo pz(xo) .
= - = - = = x aving
ds df de7dx Py (X)) o’

used Leibniz's rule for differentiating the definite integrals.

Differentiating again,

.9 .
4P el e dA/dx Sy dp, § -p_z- dp,
R e

The condition for an inflection point, dzPD/dB2

= 0, can be
written as pi(x)/p1 = pé(x)/pz, where the dummy argument x, has
been changed back to x, and primes denote differentiation with

respect to the argument. The condition can be rewritten as

S InAx) = 0 (1)

The number of inflection points in the OC curve is the number of

roots of Eq. (1). Since ln A is a monotonic function of A, the

number of roots and the value of the roots of Eq. (1) are identical

to those of the equation

A'(x) = 0. (2)
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Thus the number of inflection points in the OC curve is the number
of places the slope of A(x) is zero. Generally that is the number
of extrema of a non-monotonic A(x) but the rare occurrence of an
inflection point of A(x) having zero slope can also contribute
an OC curve inflection point. Conclusion #3 is therefore
proved. By knowing the values of x at the OC curve inflection
points, one then knows the values of x for which the likelihood
ratio has zero slope, i.e., one knows something about A(x) without
having had to estimate the class density functions.

The optimal number of thresholds on x is the number of
real roots of A(x) = T. At most, this number of roots, t, is
one greater than the number of local extrema, N, in A(x). The
argument is topological and is illustrated for a case of N = 4

in Fig. 1 for several different values of T.

(t = 1 root) {

(t = 3 roots)

(t = S roots) i

N = 4 extrema

Fig. 1
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In the illustration since there are 4 extrema of A(x), the maximum
number of roofs of A(x) = T is 5, as in the case of Tl' The
general case is t < N + 1, and since the upper bound on N is the
number of roots of A'(x) = 0, it follows that the upper bound on
the optimal number of thresholds on x is one greater than the
number of inflection points on the OC curve, proving conclusions
#1 and #2.

Finally, in conclusion #4, if pl(x) = pz(x) for all x,
then a = 1 - B and the resulting OC curve is a 45° straight line,

a well known result.

IV. EXAMPLES USING GAUSSIAN DENSITY FUNCTIONS

To conclude this note, two examples are offered,
illustrating the relation between the number of OC curve inflection
points and the optimal number of divide poiﬂts on the x axis, i.e.,
the number of thresholds on x.

Example 1 Gaussians with the same standard deviation o, = 0, = 1

and different means, m, = 0,-m2 =my¥ 0:

-éz (x-m 2
1 1
p(x) = —=—e pPy(x) = ——e
: /T% ’ /T%
mx - m
The likelihood ratio is A(x) = p2/p1 = e z_. The number

of inflection points on the OC curve is given by the number of

roots of A'(x) = 0, or more conveniently here by Eq. (1),

12




[In A(x)]' = 0. In this case it is the equation m = 0, an
equation which contradicts the initial assumption, m # 0, and
therefore the equation is not satisfied for any x, i.e., it has

no roots and therefore the OC curve has no inflection point.
Therefore we should expect one threshold to be optimal, by
conclusion #1. That such is the case is found by noting A(x)

is a monotonic function of x and therefore A(i) = T has one root,
implying that one threshold on x is, in fact, optimal.

Example 2 Gaussians with the same mean, m, but different standard

deviations, o, = i 15 06, =0 ¥ 1.

2
(x-m 2 _(x-m)
Pyl = e py(x) = 11'0 e %

1.1 2
- (—7 - 1)(x - m)
The likelihood ratio is A(x) = z o

1 .
a- e
Eq. (1) becomes [1n A(x)]' = -(17 - 1)(x - m) = 0, which has
o
one root, x = m, so that there is one inflection point on the
0C curve. Therefore by conclusion #2 we should expect the optimal
number of thresholds on x to be either 2 or 1. The optimal
number of thresholds is the number of roots of A(x) = T and
since A(x) is a Gaussian function, there are two roots for

meaningful T.

13




ACKNOWLEDGMENT

I wish to thank Dr. Robert W. Miller for reviewing this

note and making several helpful suggestions.

14




UNCLASSIFIED
SECURITY CLA ICATION OF THIS PAGE (When Dete Entered)
READ INSTRUCTIONS |
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
/ 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER

S. TYPE OF REPORT & PERIOD COVERED

A Short Catalog for Interpreting Operating Characteristic

Curves and an Application to Multiple Threshold Testing, T R ORI OReREF O R WOVEE

. Technical Note 1979-2

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERY(s)

Nathan EIUndgreL) TV ;'i/ 7 77-2 / (&i%zs-‘is—c#(z =

10. PROORM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

9. PERFORMING ORGANIZATION NAME AND ADD}W
Lincoln Laboratory, M.I.T.
P.O. Box 73
Lexington, MA 02173

11. CONTROLLING OFFICE NAME AND ADDRESS
Ballistic Missile Defense Program Office

Department of the Army 3
S001 Eisenhower Avenue o p J 13. NUMBER OF PAGES
Alexandria, VA 22333 - 22
14. MONITORING AGENCY NAME & ADDRESS (if differens from Controlling Office) 15. SECURITY CLASS. (of this report)
Electronic Systems Division Unclassified
Hanscom AFB
Bedford, MA 01731 15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited,

17. DISTRISUTION STATEMENT (of she abstracs entered in Block 20, if differens from Repont)

18. SUPPLEMENTARY NOTES

None
19. KEY WORDS (Continue on side if ry and idensify by block number)
operating characteristics hypothesis testing
likelihood ratio multiple threshold testing
discrimination

0. A{ﬂlmmﬂmum-dhl[l‘nﬂ-‘mhmm)

N In a classification rule for deci/ing between two possible classes, generally a single threshold
test is used, If, however, one or both of the class probability density functions for the decision
variable is multimodal or if the class variances are unequal, the situation may arise where it becomes
desirable to use multdple thresholds to bracket several regions of the decision variable a to the
two classes. An easy count of the number of inflection points in the operating characteristic curve
generated from the single threshold case permits determination of the maximum number of thresholds
that should be used. \

-} 173 eoimion OF 1 NOV 65 15 OBSOLETE UNCLASSIFIED

unn

SECURITY CLASSIPICATION OF THIS PAGE (When Date Bnsered)

T A0 7 5D




